
2020-10-01

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Dynamic allocation
of arrays

2
Dynamic allocation of arrays

Outline

• In this lesson, we will:

– Allocate, access and manipulate, and deallocate arrays

– Learn how to use initialization and understand the costs

– Learn what happens when allocations fail

3
Dynamic allocation of arrays

Allocating instances of a type

• In the last topic, we allocated instances of a type:
int main() {

 int *p_int{ new int{91} };

 std::cout << p_int << std::endl;

 std::cout << *p_int << std::endl;

 *p_int = 7;

 std::cout << ((*p_int + 1)*(*p_int - 1)) << std::endl;

 delete p_int;

 p_int = nullptr;

 return 0;

}

Output:
 0x39b04ff8
 91
 42

4
Dynamic allocation of arrays

Allocating an array

• How do we allocate and deallocate arrays?
int main() {

 int *array{ new int[100]{} };

 std::cout << array << std::endl;

 std::cout << array[19] << std::endl;

 array[19] = 2;

 std::cout << (7*array[19]*(array[19] + 1)) << std::endl;

 delete[] array;

 array = nullptr;

 return 0;

}

Output:
 0x1e93bd70
 0
 42

2020-10-01

2

5
Dynamic allocation of arrays

Allocating anarray

• Initialization is potentially expensive, so you can opt out:
int main() {

 std::size_t capacity{100};

 double *array{ new double[capacity] };

 std::cout << array[15] << std::endl;

 for (std::size_t k{0}; k < capacity; ++k) {

 array[k] = std::sin(0.1*k);

 }

 std::cout << array[15] << std::endl;

 array[15] = 1.0;

 std::cout << ((array[15] + 0.5)*(array[15] – 0.5)) << std::endl;

 delete[] array;

 array = nullptr;

 return 0;

}

Output:
 -1.25e-302
 0.997494
 0.75

6
Dynamic allocation of arrays

Naming conventions

• Naming conventions are useful:

– Arrays should be plural or contain a word such as array or table

 control_points control_pt_array

– Another option for dynamically allocated arrays is to prefix the
name with an a_

 a_control_point

7
Dynamic allocation of arrays

Failures in allocation

• Suppose you request more memory than the operating system can
allocate—for example, 1 GiB

– Remember, the memory must be contiguous

• The default behavior is to throw a std::bad_alloc exception

– This will terminate the program

8
Dynamic allocation of arrays

Failures in allocation

• Alternatively, it is possible to force new to simply return nullptr if
memory is not available:

int *a_data{new(nothrow) int[capacity]};

if (a_data == nullptr) {

 // Do something in case of an allocation failure

}

2020-10-01

3

9
Dynamic allocation of arrays

Summary

• Following this lesson, you now

– Know that arrays are

• Allocated using new typename[capacity]

• Deallocated using delete[]

– Are aware that dynamically allocated arrays can be initialized like
local arrays, or they can be uninitialized

– Know that exceptions are be thrown if there is a failure in allocation

• This can be overloaded to return nullptr

10
Dynamic allocation of arrays

References

[1] https://en.wikipedia.org/wiki/New_and_delete_(C++)

11
Dynamic allocation of arrays

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

12
Dynamic allocation of arrays

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

